- · 《灌溉排水学报》栏目设[09/30]
- · 《灌溉排水学报》数据库[09/30]
- · 《灌溉排水学报》投稿方[09/30]
- · 《灌溉排水学报》征稿要[09/30]
- · 《灌溉排水学报》刊物宗[09/30]
来稿应自觉遵守国家有关著作权法律法规,不得侵犯他人版权或其他权利,如果出现问题作者文责自负,而且本刊将依法追究侵权行为给本刊造成的损失责任。本刊对录用稿有修改、删节权。经本刊通知进行修改的稿件或被采用的稿件,作者必须保证本刊的独立发表权。 一、投稿方式: 1、 请从 我刊官网 直接投稿 。 2、 请 从我编辑部编辑的推广链接进入我刊投审稿系统进行投稿。 二、稿件著作权: 1、 投稿人保证其向我刊所投之作品是其本人或与他人合作创作之成果,或对所投作品拥有合法的著作权,无第三人对其作品提出可成立之权利主张。 2、 投稿人保证向我刊所投之稿件,尚未在任何媒体上发表。 3、 投稿人保证其作品不含有违反宪法、法律及损害社会公共利益之内容。 4、 投稿人向我刊所投之作品不得同时向第三方投送,即不允许一稿多投。 5、 投稿人授予我刊享有作品专有使用权的方式包括但不限于:通过网络向公众传播、复制、摘编、表演、播放、展览、发行、摄制电影、电视、录像制品、录制录音制品、制作数字化制品、改编、翻译、注释、编辑,以及出版、许可其他媒体、网站及单位转载、摘编、播放、录制、翻译、注释、编辑、改编、摄制。 6、 第5条所述之网络是指通过我刊官网。 7、 投稿人委托我刊声明,未经我方许可,任何网站、媒体、组织不得转载、摘编其作品。
农业工程论文_基于GA-Adam优化算法的BP神经网
作者:网站采编关键词:
摘要:文章摘要:针对传统BP神经网络预测农业灌水量时存在易陷入局部最小值、难以选择合适学习率的问题,提出了一种基于遗传算法和Adam算法并行优化BP神经网络的农业灌水量预测模型。该
文章摘要:针对传统BP神经网络预测农业灌水量时存在易陷入局部最小值、难以选择合适学习率的问题,提出了一种基于遗传算法和Adam算法并行优化BP神经网络的农业灌水量预测模型。该模型利用遗传算法对BP神经网络进行初始权值和阈值的预筛选,然后采用Adam算法来实现学习率自适应于参数梯度不断更新。收集黄河流域陇中片灌溉分区内7个典型灌区的气象数据以及玉米实测灌水数据对模型进行训练,同时与传统GD法、GA法、Adam法下的网络模型进行对比。结果表明:GA-Adam模型仅在训练次数为67次,训练时长为0.403s时便达到预设精度;且GA-Adam模型预测值与期望值的RMSE和MAE最小,分别为54.73和47.76,决定系数R2为0.81,总体预测效果最好。
文章关键词:
论文分类号:S274.4;TP183
文章来源:《灌溉排水学报》 网址: http://www.ggpsxbzz.cn/qikandaodu/2021/1117/1029.html